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iy TECHNICAL NOTE NO. 1585

THEORETICAL DISTRIBUTION OF LIFT ON THIN WINGS
AT SUPERSONIC SPEEDS
(AN EXTENSION)

By John C. Evvard

SUMMARY

) A derivatlion is presented of a point-source method based on
the llinearized theory for cbtaining the pressure cosefficient on
thin wings at supersonlic speeds. The method is applied to calcu-
late the lift distributlion of a thin flat-plate wing having a
gtraight leading edge and an earbitrarily curved wing tip whose
elements are swept behind the Mach angle. A guelitatlve basls for
obtalning solutions that satlisfy the Kutte-Joukowski condition is
included.

n

The anelysis 1s continued to formulate the velocity potential
for regions influenced by so-called subsonic trailing edges (that
1s, edges where the component of the free-stream veloclty normal
to the trailing edge is subsonic). The derivetions include the
solutlon that satisfles the Kutta-doukowskl condition or eny of
the infinite number of transitlion solutions involving a dlsconti-
nuity in the cross velocity (sidewash) In the wake of & subsonic
trailing edge. As an example, the two perturbation-velocity
components in the plene of a trapezoldal wing and the upwash over
the wing tip are evaluated. By means of serles exXpansions, the
nathematical nature of the 1ift distributlion In regions influenced
by arbltrary subsonlc trailing edges 1s Indicated when the Kutta-
Joukowskl or some other condition is applied to mske the solution
unique.

INTRODUCTION

The problem of determining the 1ift distribution of arbitrary
thin wings at supersonic speeds has been partly solved by use of
" the linearized theory in references 1 and 2. In reference 1, the
point-source method of reference 3 1s extended to iInclude the
effective sources gensreted by the slopes of the streamlines in
the region between the wing boundarles and the foremost Mach waves.

te



a - NACA TR No. 1585

The velocity potential and hence the aerodynamlc coefficients in the
vicinity of wing tips at supersonic speeds can then be calculated.
An explicit solutlion for the slopes of the streamlines in the
region included between the wing boundaries and the foremost Mach
waves is presented Iin reference 2. This sclutlon allows the methods
of reference 1 to be extended to include the calculation of the
veloclty potentlal at polnts on the wing influenced by interacting
external flow flelds,

In subsonic aerodynamic theory; an infinite number of solutions
wlll satlisfy the boundary conditions for a glven wing. Some
criterion is then required to choose from the manifold of solutions
the one that 1s experienced In practice. A criterion that ylelds
theoretical results in approximate agreement with experiment ls the
Kutta-Joukowskl condition. This condition requires that the stream-
lines leave the trailling edge of the airfoll smoothly (that is, that
the three components of the perturbation velocity are continuous
across the trailing-edge boundary).

When the flow 1s supersonlc, the Kutta-Joukowski condition
need not be fulfilled at the treiling edge of the airfoll. Local-
ized compression and expanslon waves equalize the pressures from
the bottom and top surfaces behind the {trailing edge. Nevertheless,
becauge of the close simillarity of supersonlc and subsonlc flow
when the component of the free-stream velocltiy normal to the
trailing edge 1s subsonic (the so-called subsonic trailing edge),

e strong opinlon emong aerodynamiclists is that the Kutta-Joukowski
condition will also approximately hold at supersonic speeds.

As Indlcated in reference 2, the formulations of reference 1
may be extended to include solutions that satlafy the Kutta-
Joukowski condition. The extension shows that in supersonic~-flow
theory, as in subsonic-flow theory, an infinity of solutions can
exlst for a glven wing boundary. Some additional criterion is
then regquired. For subsonic leading edges, the added boundary
condition applied in reference 1 ls that the perturbation-veloclity
components shall be continuous In the reglon between the wing
boundary and the foremost Mach waves. The solutions so obtained do
not satlsfy the Kutta-Joukowskl condltlion for reglons influenced
by subsonic trailing edges. If a discontlnuity in the oross-
velocity component (sidewash in the plane of the wing) is per-
mitted (corresponding to the shedding of & vortex sheet), solu-
tions may be obtained that satisfy the Kutta-Joukowskl condition
or any transition solutlon depending upon the assumed strength of
the discontinuity in the oross veloclty. The particular
criterion to be used can be determined only by experiment.
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A derivation based on linearized theory is presented in the
first part of this report to show that the theoretical pressure dls-
tribution on thin wings at supersonlc speeds may be obtained from a
line integral and a surface integrail. (A line source was applied in
reference 4 to obtain the pressure distrlbutlion at zero 1ift.) For
thin flat-plate wings or for the lift distribution on finite-
thickness wings, only line integrals are required. As an example,
the 1ift distribution is evaluated for a wing having a stralght
leading edge intersected by an arbitrarily shaped curve whose
boundary-line elements are swept behind the Mach line from the
wing-tip and leading-edge intersection. The second part of the
report formulates the expressions for the veloclty potentlal in
regions influenced by subsonic tralling edges.

Examples of these methods are presented. The solution satis-
fying the Kutta-Joukowskl conditlion is derived for a swept trap-
ezoidal wing. Sidewash end upwash velocltlies In the vicinity of
the wing tip are also calculated. As a further application, by
means of serles expansions, the mathematical form of the 1lift dis-
tribution assoclated with the weke behind a general subsonic
trailing edge 1s indicated. When this result is combined with the
line integrals In the first part of the report, expressions are
obtained for the 1lift distribution of arbitrary-plan-boundary
single wing tips at supersonic speeds. The Kutta~Joukowski and
other conditions are applied to formulate feasible solutlons for
the various wing areas. The research was conducted at the NACA
Cleveland laboratory during August and September 1947.

ANALYSTS
Point-Source Method for Evaluating
Pregsure Coeffilcient
A convenient approach toward evaluating the pressure coeffl-
cient on thin finite wings at supersonic speeds is to establish
the veloclty potential. A point-source integral expression for

the velocity potential at any point on thin wings at supersonic
spesds is glven in references 1 and 3 as

cdtdn )
s Nx-)2-p2(y-n)2

Al

P = -
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where here

P perturbation-veloclty potential on top wing surface

U free-gtream veloclty consldered parallel to x or t axis

c slope of streamlines near x,y plane measured in y = constant
planes

£, n Cartesian variables of integration, x and jy directions,
respectively

X,y Cartesian coordinates of point where @ 1is evaluated
B = AIMé-1
M free-gtream Mach number

(A complete list of symbols used in thls report 1s presented in
appendix A.) In equation (1), the integration of ¢ 1is conducted
in the x,y plane for the disturbed flow field S included Irn the
forward Mach cone from the point (x,y). For example, the integra-
tion for the wing shown in figure 1(a) is over the area Sy. In
regions influenced by a wing tip, the disturbed flow area between
the wing boundary and the foremost Mach line must also be included.

If the velocity potential is computed at a polnt —(x+dx,y), as
in figure 1(b), the area enclosed by the curve efge' 1is the same
ag the area abdc and the relation of the distances in the denomi-
nator of the integrand i1s the same as was considered at point (x,y).

The slopes, however, wlll have the value C + g% dx. In additionm,

the area &a'bd'gfe wlll contribute to the velocity potential. The
value of ¢ +then becomes

o+ =2 dx)dtan
v + a:p e —U EE
N (x-£)2-p2(3-n)?

§1+dx

ganaf (2)
¢, (x-ﬁ)z-ﬁz(y-n)z

=\|c*.

where §1 is the value of £ along the leading edge. Integration
yields - o ”

A
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® +-g§ ix = - g‘[]ﬁ (6 +§§'dx>dgd"
s

f(x-t)2-62(30)2

gdndx

aba  N(x-£)2-p2(y-n)2

(2a)

Aalg

where abd represents the path of integration. Subtraction of
equation (1) from equation (2a) gives

o
et
" Nxt)?-eB(5n)?

odnq (3)
abd  f(x-£)2-p2(y-n)?

Alg

where § and O are evaluated in the line integral as functions
of N along the line abd of figure 1(a).

The x component of the perturbation velocity may then be
computed as the surface Integral of the rate of change of the stream-
line slopes with respect to £ plus a line integral along the
foremost boundery of the disturbed flow fleld included in the
forward Mach cone from the point (x,y). The surface Integral, of
course, vanishes in regions where O is constant. (Evaluation of

the surface Integral along lines of discontinuous ~§% results in
additional line integrals.)

For some problems, the integrations of equation (3) may be
more easily evaluated in a set of obligue coordinates (u,v) whose
axes lls parallel to the Mach lines. The transformation equations

are
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u = z;%(t-ﬁn) V= -%%(h Bn)
t = E(vsa) n = £(v-u)
q (4)
Uy = %(x-ﬁy) Vg = g—ﬁ(ﬂﬁy)
x = !%(vwww) y= %i(vw-uw) i

Inssmuch as the elemental area in the (u,v) coordinate system
is ﬁ-gdudv, equation (3) may be written as

% - _2%; (% + %)dudv

s N(uy-u) (v-v) -

[0} (dv-du) (5&) *
abd  N(u-u) (v-v)

"
2Bn

where (uy,¥y;) corresponds to the point (x,y) and the evaluation

of the line integral. 1ls agaln conducted along the foremost line of
disturbances lncluded in the forward Mach cone.

When only one wing tip 1s Included In the forward Mach cone
from the point, the surface Integral over the area Sp (fig. 2(a})
generated by the upwash over the wing tlip may be replaced by an
equivalent integration over a portion of the wing. This simplifi-
cation, whlch follows from the derlvations of reference 1,
eliminates the necessity of evaluating the slopes of the streamlines
in the external flow fleld Sp. The veloclty potential at polnt
(uy,vy) on the wing of figure 2(a) 1s obtained from reference 1 as

@ = - _U; onudV
Mx
_ Sy, NV 0mem) (ve-v)
) (6p0p)dudy ¥

Se,2 2 NToea) (re)

886
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where ¢p &and Op are the bottom- and top-surface wing slopes,
respectively.

Because evaluation of ¢ from egquation (5) requires the applica-
tion of separate sets of wing slopes in the respective reglomns Sy 3

end Sy, 2, the calculation of x will result 1n a line integral

along the dividing boundary. The derivatlon presented in appendix B
then yields equation (6).

T N
%9 U T
’d 28x JJ Sw N Wu_w-u) (V’w—v)

T (optop)  3(ogeon)
U_ Su__ v

= dudv
4B
Ha,, N (mm)
U gm(dv-du) U (op+oq) (dv-du)
T 2Bn - 2R '
P ab ’V(uw'u) (V=) P bod 2 N(uw‘u)(vw'v)
du,(v.)
2w
[ et
T 2Bn (8)
bd [ 2 M(u‘w-u) (v'w"v)
duz(vw) \
where S ig the derivative of the wing-boundary curve u = ug(v)
W

at v = Vy.

In order to obtain the 1ift distribution as a function of angle
of attack @, only the solution for a thin flat plate 1s requlred.
Because Op = -Ogq = &, only the two line integrals along the curves
eb and ©bd remain. The portlon of the equatlion (6) that ylelds the
1ift distribution is then
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o Nfa - (dv-du)
2b b N () (vig=v)

g - <;- a;#)dv

2br bd N (g} (vg=v)

If the equations of the wing boundaries (fig. 2(b)) on the two

branches separated by the origin are denoted by

4
[}

vy (u) or u=u(v)

v

vo(u) or u = uy(v)

equation (7) may be partly evaluated to yleld

? _ Uo (dv-du)
X 2B - Nﬁuw-u)(vw-v)

, Ua .-duz(vw) o=V (uz (vy))
T B dvyy uy=ug (Vi)

(

where vy 1s a function of up(vy). The expression for

(7)

7a)

represented by equation (7a) i1s applied in the second part of this
report to derive solutions for the 1ift distribution that satlsfy

the Kutta-Joukowskl condition for generel-plan-form single-wing-
t1p boundarles.

As an illustration of eguation (7a), the pressure coefficient

on the top wing surface as given by the relation

2
Cp='ﬁ

will be calculated for the wing shown In figure 3.

(8)

PR
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Inasmuch as the leading edge and the wing tip satisfy the eque-
tions v = - kju and u = up(v), the integral of equation (7s2)
becomes

uz (vyy) .
5 W (1+k; )au _ Ua _(El_)_ cag-1 I3 [u-ug (w)]
2 Uy V(uw-u)(vw+klu) Prt VEI Virtk u2(vy)
(9)
and

(10)

e, @G| ([meni(ua(m) _ve[ dup(w)] [ wekiua(w)
Br dve, ug-ug(we) B av, | ugr=ug ()

The value of CP is then given as

wrHeruz (vyr) . o
Uyg~ug (V) 4ﬁ§i

k141 1 k1 [usr-uz (var)]

(11)

For comperison, equation (11) is also derived in appendix C as eque~
tion (C4) by the method of reference 1.

Equatlon (11) shows that the pressure coefficient assumes the
Ackeret value for a swept wing along the innermost Mach line from
the origin'(vw = 0) and approaches infinity along the subsonic leading
edge of the wing tip. The portlon of the solution that gives the
infinity (that is, equation (10)) is generated by the lihe integral
along the Mach line bd in equation (7). 1s quantity is zero when

t dug (vyr
the sweep on the wing tip is T O —Gw < l. A change In sign
du. w
occurs when =—2> 1 (regions influenced by subsonic trailing edges)

dvy,
in equation (10), which leads to a reversal of sign in the pressure
coefficient over a portion of the top wing surface. Thls pressure
reversal leads to lost 1lift and, because of tralling-edge suction, to
decreased lift-draeg ratio as compared with the solution that satisfies
the Kutta-Joukowskl condition.

The pressure coefficlent that satisfles the Kutta-Jdoukowski con-
dition along the subsonic traillng edge must match the solutlon given
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in equatiog (11) along the constant-vy 1line evaluated by the
u

relation E?a = 1, The pressure coefflclent must furthermore bhe
W

zero along the subsonlc tralling edge. A functlon that meets both

of these requirements is

2q (k1+1) san~1 kl[uW'HZ(Wwﬂ

P [ T Vtkyug (vl (12)

The wake from the subsonic trailing edge alters the 1lift distribu-
tion over a portion of the wing in such & manner that the discon-
tinuous term in equation (11) is canceled. In the second part of
this report, equation (12) is shown to be the correct solution for
the pressure coefficient in reglons lnfluenced by subasonic trelling
edges of & wing whose leading edge is straight (fig. 3) when the
Kutta-Joukowskl condition 1ls to apply.

Formulation of Veloclty Potentlal Including Effects

Associated with Weke behind
Subsonic Trailing Edge

In order to clarify the present discussion, a brief review of
the concepts presented in reference 1 is included. The calculation
of the veloclty potential at some point on the surface of thin wings
at supersonic speeds requires a kmowledge of the streamllne slopes
(0 of equation (1)) included in the forwerd Mach cone from the
point. The slopes of the streamlines over the area Sy(1+2)

(fig. 2(a)) are Just the wing-section slopes. The slopes of the
streamlines in the reglon Sp must then be calculated, either
implicitly or explicitly.

The slopes of the streamlines in the region Sp may be evaluated
by assuming that a thin Iimpermeable dlaphragm coincides with a stream
gheet in the plane of the wing. This assumption does not alter the
flow over the wing. The diaphragm may then be regerded as an exten-
sion of the wing to isolate the top and bottom surfaces.

The coincidencd of the diaphragm with a stream sheet requires
that no pressure difference exist between 1te top and bottom
surfaces. This condition may be satisfied by requiring elther that
the surface veloclty potentlal be continuous in passing from the top
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to the bottom surface of the dlaphragm, as in reference 1, or that
the component of the perturbation velocity along the free-stream
direction (the x component) be continuous.

If the x component of the perturbation veloclty (obtained by
differentiating the velocity potential) is equated on the top and

bottom surfaces of the diaphragm, the defining equation for the
slope A of the stream sheet Sp (fig. 4(a)) is obtained as

§_ ' A(E,n)dtdn =ga' (op-opldtan (13)
* 5, N(x-t)2-p2(yn)2 s, 2 N(x-£)2-p2(3-1)2

Integration of equation (13) ylelds

J A(t,n)atan (%5-0) _atan x o
2 -5 £
S

» N-02-2rm)? g N (x-£)2-82(y-n)2

(14)

If the function f(y) that results from the partial integration is
zero, the equation derived in reference 1 for defining A 1is
obtalned.

A calculation of the veloclty potentlal on the top surface of
the diaphragm for any value of the function f£(y) may be made.
Agein wlth reference to flgure 4(a), the velocity potential becomes

o --T (] o pdkdn
s, Nx-02-8G)?
("
.U J\ AdEdn (15)
"y Nix-92-83(5-n)?

Substitution of equation (14) into equation (15) yields

=- CronlBn__ | os) (16)
o ° N(x-£)2-g2 (3-n)?
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A similar calculation of the potential on the bottom surface of the
dlaphragm chenges only the sign affixed to f(y). The function fF(y)
thus represents one-half the difference in potentlal bstween the top
and bottom surfaces of the dlaphragm. In the case of thin plate
wings, Opi0p = O and f£(y) 1is the potential on the top surface of
the dlaphragm.

Despite a dlscontlinulty in the velocity potential across the
diaphragm, the x &and 2 components of the perturbation velocity
are continuous. This apparently contradictory state of affairs may
be rationalized by the.presence of a vortex sheet in the plane of
the wing. The strength of the vortex sheet may be chosen (by
controlling f(y)) to yileld solutions for the velocity potential
that satisfy the RKutta-Joukowskl condition for subsonic trailing
edges.

The function fF(y) is related to the strength of the vortex
sheet. If no wing nor material objJect is intercepted (for the
values of y under consideration) to generate a weke, the strength
of f£(y) remains unaltered for all values of x.

In the equations that follow, two simplificatlonas are introduced:
(1) all the derivations are conducted in the oblique coordinate
system, and (2) the derivations consider only thin flat-plate wings.-
Nelther simplification decreames the genersasllty of the solution.
The resulte for the actual wing at angle of attaeck may be evaluated
as the sum of the results at zero angle of attack and the sclution
at angle of attack for the thin flat plate of the same plan form.

The extermal flow fileld may be divided into two parts (as in
fig. 4(b)), separated by the value of y that-denotes the junction
between the leading and trailing edge. The foremost Mach line
originating on the leading edge generally represents a line off - -
infinitesimal disturbance along which  f(y) may be set equal to
zero. The function f£(y) will remain zero for values of x that
do not intercept the wing. The velocity potential (in the
z = O plane) is thus zero in the field Sp,2+ The field SD,l: on
the other hand, lies in the weke of the wing. In thils region, £(y)
will generally be other than zero (corresponding to the generation
of & vortex sheet) and may be evaluated along the wing tralling
edge.

If the region Sp,7 1ie temporarily conasldered as a portion of
the wing, the method of reference 1 may be applled to evaluate the
potential on the top surface of the dlaphragm SD,l or on the wing
surface. The virtuael wing tip is then the Yy = constant 1llne

886
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denoting the Junctlon betwsen the leading and trailing edges. Inas-
much as f(y) 1is zero in the region Sp,2, the effeots of this
disturbed flow field may be evaluated by the methods of reference 1;
equation (5) applied to the virtual wing boundary will result. When
the flow flelds are subdivided and renumbered, as on figure 4(0),
the contributlion to the wveloclity potentiel of the disturbed

fields Sp(2+4+3) end Sy,z 1s given by equation (5) as

T (oB+qz)dudv s (Az=Az)dudv ~
- M 2 M(u.w—u) (vig=v) " M 2 I\I(uw-u) (vy=v) )
Sw,2 Sp,s

because Op = ~Op. Only the slopes of the streamlines in the
regions Sy,1 and SD 1 need then be considered. The veloclty
potential thus becomes

f(y) - __ﬂ -cadudv
Sw,1 I\](uD-u) (vp-v)
U Adudv
- (17)
MJIJ]'SD,:L M(uD-u).('VD-V‘)

The origin of the coordinates for the wing of figure 4(d) is
placed at the Junction of the subsonic leading and tralling edges.
The wing boundaries are defined on the two sides of the origin by
the two sets of squations:

v = vy (u) or u = uy(v)
v = vg(u) or u = ug(v)
dup

(It will also be implicitly assumed that F> 1.) Insertion of
the limits of integration into equation (17) yields

Vo (u) D

f(y)_f(v_n;u_n)__y_f _au_ v,
- M T Mm l"__ F!__ ”_—
p “p7H vy (u) oY vo(u) Ao

(18)



14 NACA TN No. 1585

By use of Abel's solution (reference 2, 5, or 8), equation (18) may
be inverted to yield

Vz(u)

Al J: o J“ f,(r—y)dub (29)
V1 (u) VD-V (u) Vp-v U u_uD

The velocity potential at points on the wing influenced by the
subsonic trailling edge (fig. 4(e)) 1s

us(vy) vo(u) Vi
® = - U du -adv Adv
T Mx
Vo ‘uuw “l)vi(w) ‘UVW'V va(u) ‘qVW'V
Vi
U du -adv
- N —_ pr—— (20)

thug('\rw) ‘u"—u vy (a) va-v

The second member of equation (19) may replace the first member
along lines of constant vp (or wy) that extend across the wing.
Equation (20) then becomes

uz (Vw) ( -u)
1 duD
Q=
n NI U=t J u uD
'V,

Vw
Uyr W
- E_ (21)

ug (v) ‘\l v (a) ‘\FF

Fquation (21) glves the velocity potential on the wing in regions
influenced by subsonic_tralling edges. Inesmuch as

V=l
£(y) = f(‘?M E) may be erbitrarily chosen, it is apparent that an

infinite number of solutions can satisfy the boundary conditions.
If f = 0, equation (21) reduces to the result that would be
obtained by the methods of reference 1. On the other hand, if the
Kutta-Joukoweki condition is to apply, the function f may be so
chosen that the flow leaves the subsonic traillng edge smoothly.

After the function f has been chosen, the second member of

equation (19) may be evaluated. The slopes of the streamlines A may

988
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then be calculated by use of Abel's equation. These slopes 1In
general consist of two parts, A =Ag+)y, which satisfy the two
equations

+ (22)
v M -v
vl(u) vo(u) D
and
v ' u
l_ --Eg | == (23)
vz(u) V‘D-‘V‘ VD u-uD
Equation (22) has been eveluated in reference 2 to glve
20 _ v (u)-vy(u)

v-vo(u)

Equation (23) may be solved by Abel's equation (reference 2, 5, or &)
to give

f( M )duD
M o D u-up "D
A = om —— — (23&)

&~ " On ov
vg (u ) N, V-VD

In this menner, the slopes of the streamlines in the reglon

of figure 4(b) may be evaluated. If the region SD 1 1s treated
ag & portlion of the wing, the slopes of the streamlines In the
reglon SD 2 may be evaluated from the equations of reference 2.

Examples of Solutions That Satisfy
Kutta-Joukowskl Condition

Swept trapezoidal wing. - As a simple exemple, the theory of
the trapezoidal wing shown in figure 5 will be outlined. The leading
and trailing edges of the tip are defined by the equations
v =vy(u) = - kju and v = vau = kpu, where k1> O and O0< kp < 1.
Because the wing boundaries are straight lines, conical flow will be
assumed.
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Because conlcal flow has been assumed in the region influenced

by the wing tip, the cross velocity %g_must be elther constent or
a function of y/x. Because f 1s a function only of 7y, v %E

1s consteant in the region Sp,1. The function f(y) is then of the
form ag + 81y where ag and a) are constants. Inasmuch as £(y)
must be zero along the line y = 0, ag 1is zero. Eqguation (18) then
becomes

U
a, (vp-up)du 28
Adv_ __ M3 1(piplup | 22y s ()

—edv_ o
U
“kqu A, p-v o1 PJTD-V vp M ifu-up

Equation (21) then ylelds the velocity potential as

V’w/ kz

Vi Vw ko Muw Vw‘v

The two integrations indicated in equation (25) may be evaluated by
formulas 111 and 113 of reference 7 to glve

Vw/kz
-V a, 1-k
. f ., R =

kpuy-vy

+ (V=) tan~1 (286)

and

oy = - g_ -ody  _ 2Ua ‘\l‘fr‘kz Ar——v T
’1,-_ lr—_ Mn
Vw/kz Uw —klu v

(27)
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The potential @ = Cpa' + ¥, must assume the value a3y along the
curve vy = kpuy. Equation (25) (from equations (26) and (27))

meets this requirement. Moreover, %p musgt be equal to a3 along

the curve vy = kouy 1f the Kutita~Joukowskl condition is to be
satisfied. Differentiation of equations (26) and (27) ylelds

dp & 1-ky v v, (1-ko)
e R

apy, _Ua_ (ko+1) N xq+kp v, (1-k;) o1 kq (kou,~vy,)
oy 4 ko kou-vir sz ky +kp )
ky
o (29)
Setting 39 = 5-‘_-);5-‘- +35; =@ &t w= kpu,, glves
kq+k
172
a) = - Ta X, (30)
The cross veloclty on the wing is then
3p_Us (k) va(l-kp)
(31)
In & similar manner,
(kl+1) kl(kzuw-vw)
e L - A S
N,kl Vel K1 +H2

which is in agreement with equation (12) and with the results of
reference 8. W. D. Hayes of North American Aviation, Inoc., has
obtalined equation (32) from conical-flow relations.

Both the x and y components of the perturbatlion veloclty
are continuous (equations (31) and (32)) across the subsonic trailing
edge, as required by the Kutta-Joukowski condition. The upwash over
the wing tip 1s also continuous. From equation (22&),
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A = 20 uD(k1+k2) _ -ba.n"i A uD(k1+k2) (33)
DT x vp-kaup vp-kgup

From equations (24) and (23a),

281 3 J»-vD
7‘& = T v — dvp
kzu J D

Evaluation of A, end replacement of u and v by up and vp,
regpectlively, glves

20 i |E1+k2 |1 |up(1-kp) : _'J YD""D
Ag(up,vp) = = N 2 k * 1os
7 1-kp |2 "{vp-kzuD quD-kzuD + WD(l'kZ)

- o7 . (34)
2 'r -kaup- [Mvn-kzun + '\ﬁn(l-kz)]

Addition of A5 and Ay ylelds

o=

+

2 | o1 I\J(kﬁkz)un . ,\kakz 1og Nup-vD
It vp-koup 1-k '
D e Nvp-kzup + Nup(i-kz)

(35)

Equation (35) is valid only in the reglon Sp,1 of figure 5. As

v approaches kgu, A From equation (35) approaches -o, as
required by the Kutta~doukowskl conditlon. The solution then satls-
fies the Kubtta~Joukowski condition in all the perturbation-velocity
components even though only one of the components was appllied %o
evaluate the constant aj.

The x and y components of the perturbation veloclty and the
slopes of the streamlines in the region S:D,l are plotted as a
function of By/x in figures 6 to 8 for a wing on which Ik =2
and kg = 0.5. The x and y components (fige. 6 and 7) of the
perturbation velocity decrease as By/x 1s chenged from -1 (1nner-
most Mach line) to -1/3 (the wing tip). Both the x and y com-

ponents remain constent in the region - %-5 Exxs 0. The streamline



tolo}s}

NACA TN No. 1585 . 19

slopes (fig. 8) are equal to -a on the wing. The slopes change
from -o to +® iIn the region - %S %ES 0. Simllar values were

found by Lagerstrom in an Investigation for the Douglas Alroraft Co.
Generalized wing tip. - For this example, a function f(y) that

can be expended in a power serles may be chosen for the reglon SD 1
of figure 4(b). The function f(y) may then be expressed as

Tp-up
o ()
2
aj (vp-up)  az(vp-up)
= ao M -+ M2 + ¢ o (36)

Also, from formuls 750 of reference 7,
1 1 [, _ 1o, 13 (vo-up)?
= " 2\ u-vp ) T Bx&\ u-vp
Mu-up Mu-vp D
1¢3xs (Y070
- 2)(4)(6(11"%) + s e . (37)

The integrand in the second member of equation (19) then becomes

£(y) 1 gy _ 20
: = an + < a7, 5 ( -u )
Mu-u]) Nu~vp > [M 2(u-v‘D] o

az 81 1x3 )2
* { " 2M(u-vp) 2x4(u-vD)2 :] (vp-up)

az as ay 1X3 ag
——— g ——————— + T ————————
M 2M2 (u-vp) M 2xa(u-vp)2

. 20 1XEXS :I(vp-up)s oo oo e (38)
2x4x6 (u-vp) 3
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Integration of equation (38) with respect to up yields

3
u l‘. . E
£(y)dup _ ao(u-vp)Z - &y &g |(u-vp)
= M " Ela-vp)| 2
’Uu‘ D
VD _5-
2
N [a_z- . al N 1x3 ao -](u-VD)
2 7 2M(u-vp) T 2x& 3
M D (u-v:D)z_l 7
az as 1X3 aj - 1X3%5 ag (u-VD)2
-1 - 2, + 2 - g + o s
M°  2MP(u-vp)  2x4 M(u-vp)®  2x4x6(u-vp) 4
(39)

Equation (39) may be simplified by collecting the coefficients of
the constants ag, a3, ag, etc.:

u 1
f(Y)duD >
_ o \3 1 1x3_IX3%5
— - ag (u ‘_’D) 1+ 557 * oxas + Sxdxoxd T 0
'VD J D

3
ai 2(1 1 1X3 1X3X5
- 3 (w-vp) (2 T s T Exaxd T Bxdx6x5

+
NS

5 ..
a -
2 (u-VD)z(%'- + 21 + X5 + IXDXS + o . .)

v XE © 2xdx5 T Zx4x6X6
a 7
az (1. 1 13 1X3X5

- -5 (u-vp) (4 T x5 T xdx6 T BxdxexT Tt ° )

P - .. (40)

Now by formulas 750 and 482 of reference 7,
Mlex 101 Ixs o Lxaxs
T “n  2(n+l) 2X4 (n+2) 2%4x6 (n+3) e
0

(41)

988
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Equation (40) then becomes

21

1 3
f(Y)duD 5 Y
— = = a5 (u-vp)? x% - —l (u- vD)2 -3—1T
w fo-up z %
a 3 z
2 2XL a'3 2 3X2X1

'_l

X—Eg’,l-M—(-vD) l—x§x2:+....

222 graea

2m+l T 17
z (- 1)111_ (u-vp) T2 M (42)

T(m+3)

Partial differentiastion of equation (42) with respect to u ylelds

a (y)aup . ag
= 1
_ A (avg)
21 % 1 ag -2- 2x1
- u-vD) I+ L-d',—z- (u-'VD) 3—1-
2 22
- 25 (- )g- 3x@x1
w o P2 5317
222
<o
= g (-1)™ (u-vp) (43)

m=0

Equetion (43) shows that either member of equation (19) is a function

only of the quentity u-wp.
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&8a

The portion of the veloclty potentlal assoclated with the
function f£(y) 1s given from equation (21) as

2 (vw) vw-uD

duD
e (44)
Vi d;; Vw i- D
where vy, has replaced vy 1Inslde the bracket, because only u and

up are veriables in the manipuletion. From formula 750 of refer-
ence 7,

2 3
u-v u-v u-v
Lo_ 1 1+;( w)+1x3( w) 4 X35 w)+...
\)!

{quw_‘u Maw_—vw w=Var 2% U= Vop 2X4X6 -V

1
q)a=;t'

(45)

Substituting equetions (43) and (45) into (44), with w, replacing -
Vp and up(vy,) shortened to uz, yields
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Ny

ap
g, = 2(ug=w)? | ——

(uw‘vw)i

3

2 -— 8.0 28
+ -3- (ua-vw) 2 1

E-
2

L
2 (ug-vyr) M(uy-vy) 2

-

5

3 ag Ix2 & g

2 (12 |1X3 ) _a 2x1

+ 35 (v ® s 5 IH T 13
2

(uw-v,.-)E 2 (vy=var) M2 (uy-vi,)2 22

7

Zlx3xs _ %0 @ 1x3x2 21

2x4X6 5 M
(u-vy) 2x4 (uy-v;) 2

+ % (ug-v,)

9

'2'|-1x3x5x7 %0 __ixmexe 81 .
E M L] . L ]
254X6 (W =V ) 2

+ e o o (46)

Collecting the coefficients of the constants ag, a3, ag . . .
glves
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1
. domT\2
wP, = 280 u;‘;_v:) 1+ zi:s(ii-vw) 'zms(u:-v:) P
3
_ze, (ew)2h (“Z'Vw) 13 I“Z'Vw)z
M -l 1 2X5 U=y 2XEXT\uy-vy) T ° " °
(uw'vw)z
5
L 2x2a %2 (uz-v)2 11 (we-vy) (v2~Vw 2
T3 M T LI5 * 2x7 Tug-vy) 2x4x7\uw-vw) e
2’z (uw"vw)z
z
oxaxexy 83 (ua-w)ily 3 fue-vy 133 2=V \2
"5 31 3 117 2x9\uw-vw) 2x4=x9\uw-vw) oo
2 !E 2 (uw‘vw)z
Foeoe . (46a)

From a comparlison of each :I.n:fitii‘te geries of equation (46a) with the

series expansion for (1-x2)- 2 (formule 754 of reference 7), the
following equetion may be deduced:
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Z'Vw

1- 52
1

(uz -Vir )2
Uor=Vor

~Vy)

a5

g2 ds

1-g2

Z 0

2X2X
1 &2 (uw vw)z—(
—X—
2'“#

. 2x3x2xl a3 5 (=) J (:w =V,
w

Z'Vw
bt “Vw

+ o o .

(where =

T(n+1)T ( )an(vw-uw)n \

r (n%)mn

NPy = 2

n=0 Y

4 8% ds
2

is simply an integration variable) or
| 112 -'V'-w
Uyr=Vor

on
838  (4ah)

-8

(The integrals of equation (46b) may be expressed as incomplete

bete functions.)

Along the boundary u2 = Uy,

the upper limit of the Integra-

tions becomes unity and the values of the Integrals are glven by

Ml-sz  2l(n+1)

0]
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In this special case, then, 5 reduces to

i = (vyug)? = wf ()

a8 1s required along the curve ug=uy.
The portion of the x component of the perturbation veloclty

associated with f£(y) may be obtained by partlal differentiation
of equetion (46b) to glve

&Pa. (;:_: l) © (_1)n1"(n+l)1‘(%)an ( )n_.]é-.
ox 2[31'( Wu—z r (n+-]2;)Mn ug-Vy
n=0

The series of equatlon (47) is a function only of v,. Alterations
of the function f(y) for e given plan form cannot change the factor

du
2.1
(de )
f\f“w'“z
When an arbiltrary strength of vorticlty is allowed, the X component

of the perturbation velocity may be obtained by addition of equa-
tions (7a) and (47):

(47)

% _ U= dv-du
2px b M(Tw-u) (vy=v)

(=) et e ot
d n+ an -
e N SN - ZUE S )
Nouz ()
(48)
or ! o . du
% 2 dv-du + (- m) 8v) (48a)

z - N(oma) (7y) —
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where g(wy;) represents %% times the braced portion of eguation (48).

The function g(w,) depends on the shape of the wing-plan boundaries
(fig. 4(f)) and on the amount of vorticigy in the wake of the sub-
u
sonic trailing edge. The quantity ( - E;%)g(vw) is constant along
W
lines of constant .

If solutions that satisfy the Kutta-Joukowski condition are
desired, the constants of equation (48) may be evaluated. Along the
subsonic tralling edge, the x component of the perturbation velocity
must be zero. The integral of equation (48) is zero along the boundary
because the limits of Integration then colncide. The Kutta-Joukowski
condition can then be satisfled only iIf

— (-0rr@nr(d) 1

20 2/ 8n n

B Nwevalaz(w)) = el e (ng=w)" 2 (49)
n=0

Equation (49) allows all the coefficlents 8n to be chosen. Because
the first member 1s finlte when ug = vy, &g = O. The evaluation of

of the other coefficlents may be simplified by setting p = “ug-vw.
Equation (49) then becomes

(-1)2P(@s2) () o

I‘Gn+%) Mo

pén-1  (49a)

g"UM—a' va-vl(uz(vw) ) =
=1

Equation (49a) is a power series in p, whose nth coefficient 8n
may be evaluated in terms of the (2n-l)th derivative about p = O.
Differentiation of the first member of equation (49a) may be
accomplished by successive applications of the relation

d 2 uz(vw)'vw a
T - [duz(Vw) - lj TV (50)

avyy

By epplication of equation (50) and L'Hospital's rule to egua-
tion (49a), the coefficients a1 and agz, for example, have been
evaluated.

d'V'l duz

1 - —————

dusy dv,,
dug

—= -1

de

lim up—yvy—0 (51)
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and
1 -

o =MUa,l_dvldu22dzuz duz__l _91_13_1 -_3_213.3_1
2 2 duz dvye/ Gqw,2 [\dvw dvy 8\dwy

i
2

noja
ojea

1
2

MUa(l dvy duz) dzvl(duz)z dvy a2uy (duz 1)

+ -

du dvy du
- <_.§ - ) - %(1- — —2) lim up—v,—0. (52)

The other coefficlents may be similarly evaluated. Once the coeffl-

clents &y, a2, « . « &, have been determined, all the perturbation-

velocity components in the plane of the wing may be derived by means .
of the equations previously presented. '

A special case of equation (51) gives equation (30). The solu- .
tion for the swept trapezoldal wing may thus be obtalned from the
general equations that have been derived without the a priori assump-
tion that the flow 1s conical.

If only functions deriveble from the X component of the pertur-
bation velocity are required (such as pressure, lift, and drag coeffl-
cients), equation (3), (8), (7), or (48) may be directly applied. The
solution for the. wing of figure 4(f) that satisfies the Kutta-
Joukowskl condition may be obtalned by substituting equation (49) in
equation (48) to yleld

Ta dv-du
= (53)
% ZBT[ ab A{(—u-w-u) (VW"V)

For the special case of a wing with e straight leading edge (fig. 3),
equations (53) and (8) give equation (12), which was previously
obtained by intuitlon.

RECAPITULATION

A recapitulation of the formulas for the x component of the
perturbation-velocity potential of a single thin flat-plate wing tip
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with arbitrary plan boundarles is given herein. The lift-distribution

coefficlent Cp,L of thin wing tips may be obtalned from these
formulas by the relation

o+ (oo -4 2

(a) In regions not influenced by the wing tip,

%2 _ Ua dv-du
© B abd N Cagr-u1) (v=v)

(from equation 3(e) and fig. 1(a)).

(b) In regions influenced by subsonic leading or trailing edges

when no vortex sheet exists directly behind the subsonic treiling
edgs,

%Q _ Ua dv-du
X 28x
) | Ly V() (wy-v)

Ua[l ) duz(vw)] ,\jvw-n(uz(vw))

B A uyr-uz (V)
(from equation (7a) or (48) and fig. 2(b)).

(¢) In reglons influenced by subsonic trailing edges when an
undetermined amount of vortlclty is allowed in the vortex sheet

behind the tralling edge,
duz(v )
1 -——| g(wy)
%9 Ua dv-du dvy
= 3 - —
x 2Bx

L (G2 (vw-V)T N wypmuz (v

(from equation (48a) and fig. 4(f)).
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(4) In regions influenced by subsonic tralling edges when the
Rutta-Joukowskl conditlon 1s satisfied at the tralling edge,

%gg _ Ua dv-du
T2

x  Ebn ap N(o=1) (v=)
(from equation (53) and Pig. 4(f)).

Flight Propulsion Regearch Laboratory,
National Advisory Commlttse for Aercnautlcs,
Cleveland, Ohlo, January 12, 1948,

¢y

988
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APPENDIX A
SYMBOLS
The followlng symbols ere used in this report:

80y 81, 82 » o . 8y coefficients of power-series expansion of
£(y) = ag + a3y + &3y% . . .

Cp presgure coefficlent on top wing surface
Cp,L lift-distribution coefficient ( -2 CD)
£(y) ] perturbation-veloclty potential on top surface
of dlaphragm In wake of so~called subsonilc
trailing edge
glvy) undetermined function of vy
kq congtant greater than O
ko : constant whose value lies between O and 1
M free~gtream Mach number
m, n integer swmatlion Iindlices
& = NUZ—VW
S plan~form area
v) free-gtream veloclity
M .

u = 25(&"5‘1)

oblique coordinates whose axes lie parallel to

M

v = §E<§+Bﬂ) Mach lines
X, ¥, 2

Cartesian coordinates
£, 1, ¢
o angle of attack
B8 cotangent of free-stream Mach angle (NIME-I)

T gamma function
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)

Subscripts:
1, 2, 3, « « »

a
b
B
D
T

w

Examples:

or
AL

%D

Sw(1+2)

T'(n+1)

€1

NACA TN No. 1585

glope of streamlines near z = O plane measured
in y = constant planes (diaphragm-surface
slopes)

slope of streamline (on wing slopes) wilth respect
to 2z = 0 plane measured in y = constant
planes

perturbation-velocity potential on top wing
surface or diaphragm

numbered areas or curves

portion assoclated with £(y)
portion.not assoclated with f£(y)
bottom (wing or diephragm surface)
diaphragn

top (wing or diaphragm surface)

wing

glope on top wing surface
glope of diaphragm in plan-area 1

perturbation-velocity potential on top surface
of dlaphragm

wing area 1 plue wing area 2
curve v = vy(u)
ni

portion of perturbation-velocliy potential on
wing surface associated with function £(y)

portion of diaphragm slope assoclated with
function f(y)

value of f{ along leading-edge boundary curve 1
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APPENDIX B
DERIVATION OF EQUATION (8)
The velocity potential at point (x,y) for the wing tip of

figure 2(a) is given by equation (5) (written in Cartesian coordi-
nates) as

(0g+op)atan
2 N(x-£)2-p2(y-1)2
(B1)

P =-

U O'ng éan
i N(x-£)2-52(y-1)2

Alg

Sy,1 S, 2

In terms of the areas bounded by the lettered points In figure 2(c),
equation (Bl) becomss

. opdfan U (op+op)dtadn
" N(x-£)2-p2(y-n)2 ™ 2 N(x-£)2-pZ ()2
abdc bod
(Bla)
The velocity potential at point (x+ix,y) may be written
\ (Y aoT )
Op + x Jakdn
o+ Rax--2 ( 3E°
v 1htgte! M(x‘g)z"ﬁz(y‘ﬂ)z
d
U [(onT) + —(Eg-?rldx]didn
- X ' (B2)
Jdproar 2 N(x-£)2-p2(y-n)2

The aree &a'b'd'c' may be subdivided into the areas fgkc', a'egf,
and eb'd'k. The area fgkc' 1s the same as the area abcd and
the relation of the dlstances in the denominator is the seme for
corresponding points. The first integral of equation (B2) may there-
fore be written
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(GT + %?—dx)dﬁdx

ibae  Nx-8)2-p2(y-n)2

alg

. N(x-£)2-p2(y-1)2

I-J-J, (iT + %—?—dx)dﬁdn
'brd e’

gf (ST + Ez-dx afan U cT + -E-El-dx)dﬁdn
arege Nx-9Z-82-m2  "Ugpane  (x-0)2-p2(yn)?
(83)

On the other hand, the erea b'od' may be expressed as the
area ghk plus the area e0d'khg minus the area eb'd'k. The area
ghkx 1ls the same as the area bod and the relation of the distances
in the denominator ls the same for corresponding polints. The second
integral of equation (B2) may therefore be written



= 1q

o{o B"GT)
(UB-I-CTT) + dtdn Uﬂ (GB-I-O'T) + —T—dx atdn

oar 2 (x-p)2-pE(y-n)? ¥ 2 N(x-£)2-p2(y-n)2

ﬂ [(aﬂmr) s (GB":’T atim ﬁ (oB+oT) . i'%%'ﬂzax]agan ”
X B4
'khg eb'd 'k

2 N(x-£)2-p2(y- R 2 N(x-t)2-p2(y-n)2

SeST *ON ML VOVN

14

A

If equation (Bla) is subtracted from the sum of equations (B3) and (B4) end 1if expres-
slons that lead to infinitesimals of order higher than the firset In dx are neglected, the

result is

d(o )
gy =2 %Erfmgd" .z BE%E “ddfn g Cpakdn
© e N g2am? UL 2 e Reen? L N DB )
U (Gprapdaban g (0p-0p)atan
T 2 x 2_p2 2 (5)
ood 'khg Nz-8)2-62(y-n) bldtk ° §(z-£)2-p2(y-n)

The first two Integrals of equation (B5) are surface integrals over the areas Sw 1
and By 2, regpoctively. Integration of the third and fourth integrels wlth respect to ¢ over
a strip of width dx removes one integral sign and replaces df by dx. 'The width of the
strip In the fifth integral along the E, direction may be determined with the aid of the
following sketch of the area dd'k:

Se
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[

=]
F J—
A

fo ]

e
o
b

/
_....___...__TrL‘L_]
N

h
="
>
)
A

7
X

\

df = 2(dx-dxp)
Gl
= 2[3(53‘%)2 dxp

afg), o
= 3y (B6)
1+ Bi dx)g

where (%%)2 is the slope of the wlng-boundery curve in the

vicinity of the polmt d. Inbtegration of the fifth Integral of
equation (BS) with respect to £ removes one Integral sign and
replaces 4f with the fourth member of equation (B6). Equa-
tion (B5) thus becomes
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- 3
2. .U T (Faem ﬂ‘ i
= s, , Nx-8)2-82(y-n)2 " 2 V(:c-a)z B2 (y-n)2
.U " Omdn LU (GB+GT)dﬂ
Uy V02202 ") 2 Hx-t)2-g2(yn)2
U (B7)

A

Op-G) B(%‘E)z an
L [1 + ﬁ(%xx)z] M(x-ﬁ)z-Bz(.y-n)z

If equation (B7) 1s rewritten in oblique coordinates, equation (6)

results:

G
2o

)

Sw,1

V ug=u) (V=)

(O-B"'GT )

- B

o(or+0
S0 + ( %V T)]dudv

119
»
Y5y, 2

M (ug-u) (vyg=v)

Oq (dv=-du)

ab

~

§ (ugr=u) (v=v)

(C'B+C T) (dv-du)

od 2 Wu,w-u) (wg-v)

(B7a)

[

(W
o’
Qi

2 AJ(uw-u) (vyr=v)
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APPENDIX C
CALCULATION OF PRESSURE COEFFICIENT FOR WING
OF FIGURE 3 BY METHOD OF REFERENCE 1

When Op = -Op = &, equation (5) glves for the velocity potential
on the top surface of the wing shown In figure 3

W Ve
p = U du dv
Mnx
A’(u -u) qv -v
ug(vw) w -kju w
u -

P ﬂvw+klu .
Mx

Uy~

uz{vy)

% ’V fre-uz (ve)] [vrkiug (vie)]

. (g uy+vyy) san=1 Iy [ug vz (vw)]
4, k1 vytkyug (vyy)

(c1)

Now

-5 (02

Substitution of equation (Cl) into equation (C2) yields

x ~ PBx avy

vtk1uz (vyr) . (kq+1) van-1 e [uw-uz(vw)]
an
uy-u2 (vw) 4,_ X1 vir+kyug (vyy)

2

(c3)

886
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The pressure coefficient on the top wing surface is then

. 20 dug(wg) | Jwtirug (vy) Ko+l N k1 [uy-uz (v )]
P =" Bx 1- a + tan
Vw Uy~ug (V) NEi Vyrtkiug ()
(c4)
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(b) HAA

Figure 2. - Fields of integration for equations (5) to (7).
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(e)

Pigure 2, ~ Concluded, Filelds of Integration for eguations
(5) to (7).

Figure 3, - Boundary limites for equations (9) to (11},
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Figure 4, =~ Integration boundaries for evaluating veloclty
potentlal in reglons influenced by subsonlc tralling
edges.
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(a)
Figure 4. = Continued., Integration boundaries for evaluating

veloclty potential in regions influenced by subsonic trailing
edgess.
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(r)

Figure 4. - Concluded, Integration boundaries for evaluating
velocity potential in regions influenced by subsonic trailing

edges.
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FPigure 5. = Notation for swept trapezoldal wing,
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Figure 6, = Variation of x component of perturbation velocity in plane of wing near tip
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Figure 8, — Varlation of slcopes of streamlines in plane of wing
near tip of awept trapezoidal wing,



